
MHPM: Multi-Scale Hybrid Programming Model

A Flexible Parallelization Methodology

Nader Khammassi, Jean-Christophe Le Lann
Lab-STICC UMR CNRS 6285

ENSTA-Bretagne
29806 Brest Cedex 9, France

{nader.khammassi, jean-christophe.le_lann}@ensta-
bretagne.fr

Jean-Philippe Diguet
Lab-STICC CNRS

University of South Brittany
56321 Lorient Cedex, France

 jean-philippe.diguet@univ-ubs.fr

Alexandre Skrzyniarz
Domain Design Authority
Radar & Warfare Systems
Thales Airborne Systems

29200 Brest , France
alexandre.skrzyniarz@fr.thalesgroup.com

Abstract— The continuous proliferation of multicore
architectures has placed a great pressure on developers to
parallelize their applications accordingly with what such
platforms can offer . Unfortunately, traditional low-level
programming model exacerbate the difficulties of
building large and complex parallel applications. High-
level parallel programming models are in high-demand as
they reduce the burdens of programmers significantly and
provide enough abstraction to accommodate hardware
heterogeneity. In this paper, we propose a flexible
parallelization methodology, and we introduce a new
task-based hybrid programming model (MHPM) designed
to provide high productivity and expressiveness without
sacrificing performance. We show that MHPM allows
easy expression of both sequential execution and several
types of parallelism including task, data and temporal
parallelism at all levels of granularity inside a single
structured homogeneous programming model. In order to
demonstrate the potential of our approach, we present a
pure C++ implementation of MHPM, and we show that,
despite i ts high abstraction, it provides comparable
performances to lower-level programming models.

Keywords: Parallel Programming Model, Structured
Parallelism, Skeleton, Execution Patterns, Parallel
Constructs, Multicore

I. INTRODUCTION

 With the rise of Chip Multicore Processor (CMP), parallel
computing hardware is getting widely available at many
scales: from personal computers to embedded systems to high
performance supercomputers...[1,2,3,4]. While concurrent
programming is still distant from the average sequential
programmers, this proliferation of multicore architectures has
placed a great pressure on mainstream developers to
parallelize their applications as much as possible to take
advantage of theses platforms. Parallel programming using the
traditional thread-and-locks programming model remains a
hard task for most of the programmers since it is time
consuming, error prone and requires strong knowledge and
skills. Consequently, programmers are facing a complex
productivity-performance trade-off where they should extract
enough parallelism to justify the use of a dedicated parallel
programming library. Moreover, parallel hardware is becoming
increasingly heterogeneous: a modern work station may
includes two or more multicore processors with several
manycore GPUs... In order to target such architectures, a
programmer must have a deep understanding of the target
hardware and should often use several disparate programming

models making parallel programming harder and resulting
into too poor productivity. Exploiting software parallelism on
these emerging heterogeneous multicore architectures has
become a great design challenge which outline the need for
new technologies to make multicore processors more
accessible to a larger community [18].

 Due to this technological context, two major needs have
been emerged: in one hand, a high hardware abstraction to
hide details of the underlying platform providing portability ,
scalability and accommodating its heterogeneity. In the other
hand, programmability improvement is in high-demand as it
increase productivity and minimize programming
complexity. These two needs should be satisfied without
sacrificing performance and forward scalability.
Programmability is achieved by minimizing parallel
development cost in term of time, complexity and required
tools in order to remain as close as possible to traditional
sequential development. Parallel development overhead
comes mainly from programming paradigms-related routines
such as synchronization, communication, shared memory
management, workload scheduling... These routines
introduce a significant amount of extra-code related to
parallel programming paradigms and not to the user
application itself. Additional effects such as hard debugging
and difficult performance tuning are also induced.

 Skeleton-based programming, often referred as structured
parallel programming [10,11], is a promising high-level
approach which satisfy most of these requirements and
attempts to replace the traditional low-level thread lock
model with better abstraction and easier way to express
parallelism through a collection of recurrent parallel patterns
[6,9]. It aims mainly to provide a good trade-off between
programmability, portability, reusability and performance
increasing in order to improve programmer productivity by
letting him focus on algorithms instead of hardware
architectures. In this paper, we introduce a pattern-based
hybrid programming model named MHPM (Multiscale
Hybrid Programming Model) designed to provide high
productivity without sacrificing execution efficiency. The
philosophy behind its design is “Easing parallelism
expression without loosing execution efficiency”. In MHPM
C++ implementation, productivity is promoted through
providing a friendly and intuitive programming interface
allowing easy expression of both sequential execution and
several types of parallelism, including task parallelism, data
parallelism and temporal parallelism (pipelining), at
multiples level of granularity inside a single homogeneous

and structured model through an extendable collection of
execution patterns or algorithmic skeletons.

 In order to illustrate the potential of MHPM and the
simplicity of its programming interface, Fig. 1 shows an
irregular hierarchical task graph representing multiple fork/join
execution pattern at several level of granularity, and Fig. 2
show how parallelism in this relatively complex graph can be
expressed through a single C++ line of code (line 5) without
altering the original sequential code. Each task of this graph
can be easily defined, at the cost of a single line of code, from
a function, a class method or a lambda expression allowing
direct reuse of sequential code without any constraints on
function or class method prototypes and without modifying
their code. Moreover, in MHPM, concurrent shared data
access, and therefore potential “race condition”, is detected
transparently, then shared data is protected automatically at
any level of granularity through critical sections relieving the
programmer from managing shared data by himself such in
near-all parallel programming model where programmer has to
manage it manually using mutual exclusion primitives.

Figure 1. Example of task graph specifying task parallelism and
task-data dependencies (r: read, w:write).

Figure 2. Task parallelism expression in MHPM

 MHPM is based on a powerful and rich intermediate program
representation, named the Hierarchical Task Group Graph
(HTGG). HTGG is the heart of MHPM which specify
sequential execution and several types of parallelism at many
levels of granularity disregarding the available amount of
parallelism in the target program. HTGG is built from an
extendable collection of nestable execution patterns which can
be used hierarchically inside each other allowing progressive
parallelization, better granularity control and data, task and
temporal parallelism integration inside a single homogeneous
and highly structured programming model. Fig. 3 shows how a
sequential program can be parallelized through specifying
parallelism in the HTGG and gives an overview of MHPM
architecture which is mainly composed of :

 A C++-based programming interface which exploit
C++ meta-programming capabilities [24] to ease
expression of parallelism in the HTGG.

 A Hardware Abstraction Layer (HAL) which
provides dynamically a description of the
underlying architecture and accommodate hardware
heterogeneity: HAL uses dynamic hardware
exploration to detect available computing resources
and their properties (available processing unit, their
execution capabilities, processor cache topology …)

 An Intelligent Run-time System (IRS) which exploit
information, extracted transparently from both
hardware description and used execution patterns
(task ordering and task-data dependencies) to
perform efficient execution on the underlying
architecture.

 The MHPM is implemented as a C++ framework named
XPU. This framework offers an intuitive, easy-to-use and
light-weight programming interface to design parallel
applications or parallelize sequential ones. At the opposite
of many parallel programming models which introduce new
languages, define compiler annotations or extends existing
language and thus requires specialized compiler, extra-
hardware, or virtual machines [4,18]... XPU is a pure
software technology entirely based on the traditional standard
ISO C++ language and requires nothing more than a standard
C++ compiler to be used, and therefore, improve learning
curve steepness and is easily portable to many systems.

 In this paper we will focus mainly on the programming
interface and the program parallelization methodology: we
show how a sequential program can be progressively
parallelized and represented as a HTGG, then we explains
how several types of parallelism as well as sequential
execution can be specified easily in the HTGG through the
provided collection of nestable execution patterns. We
discuss how our programming interface is able to extract
transparently information on task-data dependencies and how
this information can be exploited to improve productivity and
provide dynamically efficient execution on the underlying
multicore architecture. Finally we give a brief overview of
achieved performances by XPU. Since hardware abstraction
and task scheduling techniques are not the subject of this
paper the HAL and IRS components will be discussed in
dedicated papers.

II. RELATED WORKS

 Structured parallel programming with deterministic patterns
[6] is a high-level approach mainly based on a collection of
recurrent parallel execution patterns, often referred as
algorithmic skeletons [9,10,11] or parallel constructs, which
abstract program description and hides low-level
multithreading details and many complexities inherent in
parallelism from the programmers [16,17]. These reusable
patterns automate many parallel paradigm-related routines
such as synchronization, communication, data partitioning or
task scheduling... and handles them internally. For instance,
many task-based structured programming models such as
Thread Building Blocks [7] and Cilk++ [8] offer a set of
execution patterns which handles transparently task
scheduling, data partitioning and load-balancing. Unified
Parallel C (UPC) Task Library HotSLAW [5] abstracts
concurrent task management details and provides transparent
data communication and dynamic load balancing [5,18].

1 void main() {
2 task ta(function, data_1), // task definition
3 tb(&o, cls::method, data_2), ...;
4 task_group * program;
5 program = parallel(sequential(ta, parallel(td,te)),
6 sequential(tb, tc));
7 init();
8 program­>run(); // 'data_4' protected automatically
9 clean();
10 }

Figure 3. Overview of the intermediate program representation (HTGG) and MHPM architecture.

Sequoia [20] is another task-based programming model
which offer transparent data management in deep processor's
memory hierarchy including data allocation and
communication through the memory tree [18].

 By decoupling the programming model from the underlying
architecture, pattern-based approach offer also a good
hardware abstraction accommodating architecture
heterogeneity, opening the path to more hardware support
and allowing the programmer to focus on algorithms instead
of hardware architecture. For instance MIT-LL is developing
the Parallel Vector Tile Optimization Library (PVTOL) [14]
in order to expand parallel programming constructs in
Parallel Vector Library (PVL) [22] and VSIPL++ [12] to
support both homogeneous and heterogeneous multicore
architectures [18].

 Despite their ability to express parallelism at the cost of
relatively little amount of programming effort, most of task-
based parallel programming models target specific
application domains such as signal processing in the case of
PVL, PVTOL and VSIPL++ and offer limited collection of
execution patterns to express specific type of parallelism: for
instances if Cilk++ allows easy expression of simple and
nested task parallelism, its ability to express temporal
parallelism, such in the pipeline execution pattern, is much
harder and requires verbose restructuring of the code [27].
Finally, in spite of their high hardware abstraction, most of
known task-based programming are not yet able to support
heterogeneous multicore architectures requiring programmers
to use one or more additional programming models, such as
OpenCL[25] or CUDA[26] to support GPGPU for example,
in conjunction with another task-based programming model
to exploit multicore CPU and SMP platform, and perhaps a
third programming models such as MPI to support
distributed memory architecture... resulting into
heterogeneous programming model hard to use and maintain
and requiring multiple skills and deep understanding of
different hardware and software components. These

constraints results in a severe productivity loss and can be
discouraging for the average sequential programmers.

 Main-stream applications and general-purpose programs are
“more-or-less” parallelizable depending on their nature:
programs may expose a varying amount of parallelism and
consequently different parallel-sequential ratio: : many known
scientific simulations and signal processing problems are
massively parallelizable however many other general-purpose
applications are much less parallelizable and exposes much
more sequential execution constraints such many video
decoding algorithms [28] and compression algorithms [29].
This outlines the need to express both parallel and sequential
execution into a single homogeneous hybrid programming
model able to specify both sequential and parallel execution
in order to provide a generic and non-domain specific
programing model. Also, a program may exposes several
types of parallelism often difficult to express using a single
programming model so programmer uses several disparate
programming models inside the same application resulting
into ineffective uses of processors caches, poor load-
balancing and potentially system overloading with many
independent run-times.

 MHPM try to bypass these limitations by allowing easy
expression of both sequential execution and several types of
parallelism at multiples level of granularity inside a single
homogeneous model, so a programmer can parallelize its
application as much as possible by using a single flexible
programming model. Since it allows the specification of
parallel execution as well as sequential one, MHPM target a
wide range of programs from various application domains:
from highly parallelizable applications to much less
parallelizable ones and remains valid even for fully sequential
ones. Since promoting productivity is one of our primary
design goals, MHPM handle implicitly many parallel
programming paradigm-related routines such as
synchronization, communication, shared memory
management … and therefore, hide many complexities

inherent in parallelism from users. The internal design of
parallel and sequential patterns allows transparent extraction
of valuable information on task-data dependencies enabling
an intelligent run-time system to detect shared data between
tasks and protect it transparently against conflictual accesses
often referred as “race condition”.

III. A TASK-BASED PARALLELIZATION METHODOLOGY

 Task-based programming is based on the decomposition of
a program into a set of tasks which cooperates with each
others to perform the main work of the application program.
Tasks granularity can be controlled and specified by the
programmer: a program is basically the main task which is
split into several coarse-grain tasks which may be split, in
turn, into finer-grain ones, and so on... until we reach the
finest-grain allowed by the host programming language (cf.
Fig. 4).

Figure 4. Program decomposition at many granularity levels

 Each task of the application program performs a piece of
work in which it may consumes or produces data, i.e., read or
write private or shared data. In order to speedup optimally
program execution on parallel computing architectures, we
have to extract the maximum amount of parallelism. The
ideal case, is the one in which all tasks, at the finest possible
granularity level, doesn't exposes any data or control
dependencies, so they can be executed simultaneously (cf
Fig. 5). Unfortunately, real world programs are “more-or-
less” parallelizable depending on their natures: while many
scientific simulations exposes massive data parallelism and

Figure 5. Ideal Parallel Program

thus are highly parallelizable , many other general-purpose
applications, which represents the wide majority in the
software landscape, are much less parallelizable due to data
and control dependencies and explicit task ordering. Indeed,
these algorithmic constraints introduce needs for
synchronization and ordering to preserve memory coherency
and algorithmic consistency. Consequently, each subset of

the tasks composing the program can be executed either in
parallel or sequentially depending on these constraints which
define thus the parallel-sequential code ratio or the available
parallelism in the target program. At the end of the
parallelization process, we obtain a hybrid execution graph
containing both sequential and parallel sections (cf Fig. 6).
The available parallelism vary depending on applications
natures, but the model remains usable for either highly and
weakly parallelizable programs and even for fully sequential
ones.

Figure 6. The Hybrid Programing Model specifies sequential
execution and several types of parallelism at all level of granularity.

 Tasks may expose locally several types of parallelism
including nested task parallelism, data parallelism at thread
through parallel loops or instruction level through
vectorization or temporal parallelism through pipelined
execution. These execution configurations can be specified
into a collection of execution patterns. For the sake of
simplicity, we use interchangeably “execution pattern”,
“construct” or “skeleton” to indicate a structure storing a set
of tasks and specifying their execution configuration.

A. The Hierarchical Task Group Graph

 In order to accommodate execution patterns heterogeneity,
so they can fit into a single homogeneous structure
representing the program, we define a common abstract
constructs named “task_group”. All our execution patterns
implement this common interface: for example
“sequential_tasks” are a group of tasks scheduled to run
sequentially while “parallel_tasks” are a group of tasks
scheduled to be executed simultaneously (a basic fork and
join pattern) and “pipeline” is a group of communicating tasks
running as a chain of overlapped processing stages... etc (cf.
Fig. 7). These task group implementations can be easily
extended to express more execution patterns and meet
specific programmer needs in all applications domains. We
note the “Task” is also, by design, a “task_group” containing a
single task. Consequently most provided constructs are
nestable and can be used hierarchically inside each other.

 By expressing parallelism at several level of granularity
using these patterns, we obtain a hierarchical structure
composed from task groups of “task_group”, this structure is
named HTGG. Task ordering is specified inside each
constructs, so when a task group is called, it execute its sub-
task groups following the specified execution pattern and each
of these sub-task groups will, in turn,do the same with their
sub-task group ...etc.

Figure 7. A Simplified overview of the internal software
design accommodating constructs heterogeneity so they can fit inside a

single homogeneous and hierarchical structure: The HTGG

IV. PROGRAMMING INTERFACE

 The HTGG is a complex structure containing several
heterogeneous constructs to express different execution
patterns. It encapsulates not only the code of tasks but also
specify task execution ordering and contains many other
information about task-data dependencies and shared
memory and provides an interface to specify the task-
processor mapping. In order to build easily this complex
structure, we tried to exploit C++ Meta-programming
capabilities to offer an intuitive interface to build the HTGG
at the cost of a little amount of paradigm-related extra code
and to promote reuse of sequential code with the lowest
possible modification/alteration. C++ Meta-programming
techniques imply massive uses of templates which offer great
compile-time optimization but also may make the code less
readable and relatively verbose on programming errors. In
our case, we used templates internally behind front-end
polymorphic functions to relieve the user from specifying
explicitly argument types and count when building execution
patterns. Consequently, the resulting programming interface
is easy-to-use and doesn't expose any template structure to
the programmer. As we progress in this section we will
mention the different meta-programming techniques used to
simplify the programming interface and to provide advanced
features such as transparent shared memory detection and
protection.

A. Example of a multimedia application

 In order to illustrate the potential of our programming
model, we consider a simplified example of a multimedia
application. In the begining, we introduce the sequential
version written in C++ and we show how we can parallelize
it progressively at many levels of granularity the collection of
execution patterns provided by XPU.

1) Sequential version
 Every frame of the input stream of our multimedia
application contains sound and images. Our program process
sound samples, and images before encoding them into a
common compressed output bitstream. Fig. 8 and 9 gives a
general overview of the sequential program algorithm and
the associated skeleton of sequential c++ code. In the first
place we don't discuss implementation details of each block
of the algorithm, we consider simply a set of functions coded
using the traditional sequential programming model, (They

may be functions, class methods, or even remote function
calls...), we give just their prototype without discussing their
internal implementations to illustrate how we can reuse
directly sequential code without significant modifications.

Figure 8. Sequential version of the multimedia application

2) Parallelization

 In a first time we decompose our program into tasks simply
by reusing the sequential functions as tasks. By looking to our
sequential program as shown in Fig. 9, we can identify
coarse-grain task parallelism between audio processing and
video processing which can be executed simultaneously since
they are independent so we can start by parallelizing our
program through a large grain fork/join pattern. In a next step,
and at a finer grain, if we analyze each task of both the audio
and video processing task group, we can identify, locally,
several parallelism types including data parallelism through
parallelizable for loop such in “audio_encode_samples” task,
temporal parallelism by using the pipeline pattern in the audio
and video fileting tasks and finally massively parallel
operations on large vector of data (massive SIMD operations)
such as in the last stage of “process_video_frame” pipeline :
the “multiply” task. We can go further and parallelize at a
finer grains to extract the maximum amount of parallelism.
Final parallel program structure is relatively complex,
however, in the next paragraphs, we show how parallelism in
this program can be expressed at the cost of a little amount of
extra-code and thus little programming effort and we outline
the flexibility of our model which allow progressive
parallelization of the target program.

B. Task Definition

 Decomposing a program into a set of pieces of code is the
first step in the parallelization process in most of parallel
programming models, in low-level thread-lock programming
model, these pieces of code are called callbacks, in higher
level task-based programming models this piece of code is
called task. We outline the high programmability of our
programming model by comparing it to lower level one
(PThreads) and the high-level task-based programming model
Threading Building Block (TBB).

1 int main()
2 {
3 char * in_stream, * out_stream, * audio_samples;
4 image * video_frames;
5 while (input_stream_available)
6 {
7 load_input_stream(in_stream);
8 extract_audio_samples(in_stream, audio_samples);
9 process_audio_samples(audio_samples);
10 encode_audio_samples(audio_samples);
11 write_audio_to_stream(out_stream, audio_samples);
12 extract_video_frames(in_stream, video_frames);
13 process_video_frames(video_frames);
14 encode_video_frames(video_frames);
15 write_video_to_stream(out_stream, video_frames);
16
17 write_output_stream(char * out_stream);
18 }
19 }

1 int load_input_stream(char * in_stream);
2 int extract_audio_samples(char * in_stream, char * audio_samples);
3 int process_audio_samples(char * audio_samples);
4 int encode_audio_samples(char * audio_samples);
5 int write_audio_to_stream(char * out_stream, char * audio_samples);
6 int extract_video_frames(char * in_stream, char * video_frames);
7 int process_video_frames(char * video_frames);
8 int encode_video_frames(char * video_frames);
9 int write_video_to_stream(char * out_stream, char * video_frames);
10 int write_output_stream(char * out_stream);

Figure 9. This multimedia application can be parallelized at several level of granularity: task parallelism between audio and video processing and
local data and temporal parallelism inside several tasks can be expressed in the HTGG.

1) POSIX Threads Programing Model
 In the traditional low-level thread-lock model, this piece of
code is called callback and plays the role of tasks in task-
based programming model and is the main component of
multi-threaded applications. If we consider C++ language,
the host-language of our programming model, sequential
code is often severally altered since the targeted piece of code
has to meet the native callback prototype “void *
function(void *)” which imposes many restrictions to the
programmer when parallelizing application or reusing
sequential code : only static functions can be used as
callback, dynamic class method can't be used directly, in
addition, consumed and produced data should be stored in a
common intermediate structure then extracted and restored to
their original type through type casting. These constraints
lead to many modification of the sequential code, usually a
lot of programming paradigm-related extra-code and thus
make the code less readable, error-prone and difficult to
maintains. This lack of flexibility and programmability
amplify the burden of the programmer dramatically and make
the reuse of sequential code difficult.

2) Threading Building Blocks
 TBB is a high level programming model which provides
more abstraction and allows the reuse of sequential code in a
less restrictive way. However, significant modification to
sequential code are required: task code and its consumed or
produced data should be encapsulated in a class respectively
as class members and class methods with specific prototype.
Consequently, sequential code can't be reused directly and
has to be significantly transformed. This leads to verbose and
less readable code and requires significant programming
effort.

3) XPU
 Since promoting the reuse of sequential code is one of the
primary design goals of XPU, we tried to outcomes the

previously enumerated limitations through a more flexible
task design. In MHPM, by design, a task is basically an
abstract callable piece of code which can be executed. This
piece of code may consume or produce data. Data are passed
in the form of arguments to each task. Fig. 10 show how a task
can be created from a function or a class method disregarding
its argument count or type and its return type.
A more advanced implementation of tasks for static and
dynamic distributed systems are in development at the time of
writing of this paper. We exploit C++ meta-programming
capabilities to provide a friendly programming interface
allowing simple and fast definition of tasks from existing code
to promote reuse of code and improve programmer
productivity. At the same time, by combining polymorphism
and several C++ template programming techniques we take
advantage of compile-time compiler optimization to produce
efficient code. Moreover, meta-programming techniques allow
us to investigate used data type ,through Compile-Time Type
Identification CTTI [23,24], and therefore, detect
transparently task-data dependencies at compile-time. This
information are exploited to detect automatically concurrent
 accesses to shared data in the HTGG and protect it against
potential race condition. In ongoing works, we try to exploit
this same information to perform efficient execution on the
underlying architecture dynamically by improving temporal
and spatial data locality through cache-aware task scheduling.

 When defining a task, data access is specified implicitly or
explicitly through the passed argument. By default, argument
passed by value are considered as a local read access data,
arguments passed by pointer are considered as a potentially
shared data accessed in write mode, argument passed through
constant pointer are considered as a potentially shared data
accessed in “read only” mode (it can be explicitly specified
using the __read_only() macro or simply passed as a constant
pointer argument), finally, case of arguments passed by
references is not yet treated due to value/reference ambiguity
issue with some compilers.

Figure 10. Task definition from different pieces of code.

 As chown in Tab. I, despite its high abstraction, task call
introduce negligible execution overhead.

TABLE I. TASK CALL OVERHEAD (CLOCK CYCLES): COMPARISON
BETWEEN CALLING TASK ENCAPSULATING FUNCTION CODE AND DIRECT

FUNCTION CALL.

Compiler C++ GNU v4.6.1 Intel v12.0.5

Optimization -O1 -O2 -O3 -O1 -O2 -O3

Function call 2358 2356 962 1778 966 966
Task call 2356 2358 1038 1782 968 968

Overhead -2 2 76 4 2 2

V. TASK PARALLELISM

 If we consider data dependencies in our multimedia
application example, video processing and audio processing
can be viewed as two coarse-grain independent tasks and can
be executed in parallel. However input stream loading task
should be executed before any stream processing. Finally,
output stream writing task can't be executed before
processing tasks are done. Task ordering and parallelism can
be simply specified as in the Fig. 11 and expressed using
XPU as in Fig. 16.

 Task ordering can be specified recursively using two
keyword “parallel“ and “sequential” whatever the task graph
complexity, irregularity or depth. These functions take as
arguments, two or more “task” or “task_group“. At the end of
task ordering specification we obtain a HTGG which specify
parallelism and sequentiality at all levels of granularity. Once
the tasks graph constructed, tasks are ready to be executed in
the specified order. Since tasks ordering specification is
inherent in the HTGG, thread creation, task spawning and
synchronization (fork and join) are managed transparently by
the run-time scheduler which ensure the execution of tasks in
the specified order. If we summarize the previous, expressing
parallelism in our programing model can be performed,
mainly, in three steps: tasks definition, HTGG construction
and finally HTGG execution by calling the root task.

Figure 11. Intermediate program representation

Figure 12. We express task parallelism the multimedia application
in two steps to have more readable code.

 Separating task definition and graph construction from tasks
execution allows our run-time system to exploit the valuable
information about task-data dependencies encapsulated in the
tasks as well as the explicit parallelism specification, inherent
in the tasks graph, to perform several operations before
executing the task graph. In order to promote productivity,
speedup and simplify parallel programming MHPM automates
many parallel-programming paradigm-related routines such as
shared memory management, tasks synchronization and
performance tuning. In the next paragraph we review briefly
transparent shared data detection and protection feature.

A. Transparent Shared Data Detection and Protection

 We can remark, in the definition of the task
“write_video_stream” and “write_audio_stream”, that both of
these tasks write their output bitstream into the same common
“output_stream” (cf. Fig. 8 and 11). When building task graph,
the run-time system will check dynamically task-data
dependencies to determine which task accesses which data
and how it is accessed (write or read mode), then it will look
for shared data in parallel sections at all granularity levels.
Finally, if two or more concurrent tasks accesses shared data
in write mode, these tasks will be transformed into critical
sections by associating transparently a “lockable” (an
abstraction of mutual exclusion mechanism: mutex and
spinlock are an example of implementations of the “lockable”
interface.) to the shared data so it will be protected against
potential race-condition when executing the tasks. We note
that this technique suppose no unsafe direct accesses from
tasks to global variables since this type of accesses is out of
the control of our run-time system which uses arguments list
to determine task-data dependencies. Consequently,
programmer is invited to specify explicitly used data in its
argument list when defining tasks and should not hides
pointers to shared data inside complex structures.

1 class image
2 {
3 public:
4 int sharpen(int val);
5 int blur(...);
6 ...
7 };
8 int main()
9 {
10 image img(“img.jpg”);
11 task sharpen_t(&img, &image::sharpen, 11);
12 }

1 int main()
2 {
3 float * f;
4 xpu::task low_pass([](float * samples, int freq)
5 {...code... }, audio_samples, 7000);
6 }

1 int main()
2 {
3 ...
4 task_group * process_audio = sequential(extract_audio_t,
5 process_audio_t,
6 write_audio_t);
7
8 task_group * process_video = sequential(extract_video_t,
9 process_video_t,
10 write_video_t);
11 task_group * program ;
12 program = sequential(load_stream_t,
13 parallel(process_video, process_audio),
14 write_stream_t);
15
16 while (input_stream_available)
17 program.run();
18 }

1 int load_input_stream(char * in_stream);
2 int extract_audio_samples(char * in_stream,
3 char * audio_samples);
4 int main()
5 {
6 task load_stream_t(load_input_stream, in_stream);
7 task extract_audio_t(extract_audio_samples,
8 __read_only(in_stream),
9 audio_samples);
10 ...
11 load_stream_t(); // or load_stream_t.run() to run task
12 }

 Specifying in/out data accesses for each task can be seen as a
constraint, but also it can be seen as a good practice which
make code easier to read, maintain and parallelize. Following
this unique rule, the IRS will gantry transparent management
of shared data and prevent potential “race-condition“
automatically. Breaking a big grain task, such video and audio
processing tasks in our example, into a sequence of finer grain
tasks can be useful if this task share data with parallel tasks:
since the task in this case is executed inside a critical section,
dividing this task into a set of sub-tasks may reduce critical
section size and maximize parallelism.

B. Experiment: Programmability Evaluation

 In this experiment, we tried to evaluate XPU
programmability in comparison with TBB. A traditional
approach for quantifying programmablity or required
programming effort is to compare the parallel program to its
sequential version in term of the number of lines of code [31].
We consider a simple sequential application in which we call
successively 7 functions, this application can be parallelized as
shown in our first example in Fig. 1. We can define a task for
each function when required. We note that “data_4” is shared
between two parallel tasks (4 and 5). We tried to express task
parallelism as specified in the task graph using XPU and TBB
then we counted the required parallel paradigm-related extra-
code line and the reused sequential code lines. We used
“CLOC” [30] to count lines of code in each version, we
removed all blank lines and comments, we verified we have
exactly the same number of lines of code found by CLOC,
then we used the classic “comm” tool, available in most UNIX
systems, to determine the number of lines of both reused
sequential code and required extra-code.

 In the TBB version we define 6 task classes: 3 tasks to
encapsulate function 1,2 and 3, one intermediate task hold
these 3 tasks, another intermediate task to call successively
function 2 and 5 and finally we define the root task that spawn
these intermediate tasks. We use TBB task parallelism
primitives: allocating, spawning and waiting for root and child
tasks. A TBB mutex is used to protect shared data “data_4”
from race condition [7]. XPU version require a single line to
define a task for each function in the parallel section and
another 2 lines to build the task graph and execute it. The
sequential code of functions doesn't require any modification.
The shared data is detected and protected automatically by the
run-time system. As show in Fig. 13, while XPU version reuse
80 lines among the 86 lines of sequential code and requires
only 10 extra-lines for parallelization, the TBB version reuse
42 lines and requires 140 lines of parallel paradigm-related
extra-code.

Figure 13. programming models in term of required programing
effort: required extra-code and reuse of sequential code

VI. TEMPORAL PARALLELISM

 MHPM enables the programmer to express temporal
parallelism easily through the pipeline execution pattern.
Pipeline pattern implements the abstract «task_group»
interface and thus can be used at any level in the HTGG as
the other «task_group» implementations. The «pipeline»
pattern can be constructed from a set of tasks used as
overlapped processing stages. As shown in Fig. 14, these
stages are executed to process elements of a data container:
each element is processed by the first stage or the “head” of
the pipeline, when finished, this stage notify its successor
that the element is ready to be processed by the next stage,
then it moves to the next data element. This cycle is
reproduced for each stage until we reach the tail of our
pipeline. So sequentiality of the execution is satisfied at the
element level, but parallelism is exploited at the data
container level increasing therfore task throughput. Pipeline
is a recurrent execution pattern in many application domains
such as signal, image and more generally stream processing.

Figure 14. Internal Pipeline Architecture

 In our example, pipeline pattern can be used in the image
processing task “process_video_frame” in which many
filters are applied to each frame of the incoming stream.
Filters should be executed in the specified order for each
image of the input stream. In order to satisfy filter ordering,
filters can be used as pipeline stages so each image is
processed by the first filter then can be immediately
processed by the next filter without waiting until all images
are processed. We note that the first function argument is
used as an index of the element to be treated, it is updated
by the pipeline constructs for each stage until all elements
are processed by all stages. Fig. 15 show how we can build
a 4-stages pipeline. This pipeline can be used to parallelize
the task “process_video_frames” of our multimedia
application.

Figure 15. An example of four stages pipeline

1 void sharpen(int i, vector<image> * imgs) // i = frame index
2 { imgs[i]­>sharpen(); }
3
4 void multiply(int i, vector<image> * imgs, image * mask)
5 { imgs[i]­>multiply(mask); }
6
7 int main()
8 {
9 vector<image> frames(size);
10 ...
11 task sharpen_t(sharpen, 0, &frames),
12 blur_t(blur, 0, &frames),
13 multiply_t(multiply, 0, &frames, &mask);
14 task_group * process_image = pipeline(size, sharpen_t,
15 blur_t,
16 contrast_t,
17 multiply_t);
18 process_image­>run(); // frame index “i” will be updated

VII. DATA PARALLELISM

 Data parallelism refers to scenarios in which the same
operation is performed concurrently on elements of a data
container [33]. Data parallelism can be specified at different
levels of granularity and can be implemented at thread level or
at the instruction level. In data parallel operations, data is
partitioned so multiple threads can operate on different data
partition concurrently. XPU enables the programmer to express
data parallelism at thread level (TLP) through parallelized for
loop , at instruction level (ILP) through a set of vectorized
data types (SIMD) and at both through parallel vector.

A. Parallel loop

 The “parallel_for” pattern is a task group implementation
specifying parallel for loop. When defining a parallel loop (cf.
Fig. 16), its main range will be partitioned transparently using
a pseudo-fair partitioning algorithm into several sub-ranges
depending on the available processing units. Partitioning is
performed at the pattern construction stage minimizing
overhead at construct execution and allowing us to implements
various data partitioning schemes without caring about
algorithmic complexity: for instance, we experimented several
workload distribution techniques and data partitioning
algorithms without modifying the «parallel_for» front-end due
to its high abstraction of implementation details. The run-time
system behind our programing interface, its data partitioning
algorithms and exceeds the subject of this paper and will not
be discussed in dedicated papers .

Figure 16. An example of parallel for loop definition

B. Parallel Vector: Massive data parallelism on
heterogeneous multicore architecture.

 Vector is a popular homogeneous data container which might
contains a significant amount of data. This structure is
particularly suited for massively parallel operations on
different partitions of the target vector. Providing an abstract
parallel vector interface allows the parallel processing of its
element using different algorithms and on various multicore
and many-core platforms: for instance Thrust [21] is a parallel
algorithms library which offers a C++ standard template
library-like vector interface and inter-operates internally with
CUDA, TBB or OpenMP to run on multicore and many-core
architectures including CPU and GPU. PVL [22], PVTOL [14]
and VSIPL++ [12] uses high-level vector, matrix and tensor
data structures in conjunction with task maps and data maps to
parallelize data processing and distributes workload across
available processors [18].

 OpenCL is established as a standard for heterogeneous
computing [25] and was explicitly designed with abstraction
that are low-level, high performances and portability [18].
OpenCL programming interface requires explicit management

of memory, kernels compilation and workload scheduling
resulting into verbose code and requiring deep
understanding of all software and hardware components. In
our programing model we defined an abstract parallel vector
interface in top of OpenCL enabling programmer to perform
massively parallel operations on heterogeneous multicore
architecture. Our vector interface uses the operator
overriding features of the C++ language to translate
transparently, at run-time, basic operations, such as addition
or subtraction...etc, into corresponding OpenCL kernel then
managing transparently memory transfers and workload
scheduling. Fig. 17 shows an example of vector addition.

Figure 17. Parallel vector interface: OpenCL kernel is
generated transparently and memory transfers is managed automatically.

C. Brief overview of XPU performances

 In order to give an overview of the achieved performances
by our data parallelism implementation, we used our
framework to parallelize the popular “Black-Scholes”
problem at thread level using the "parallel_for" construct
and at a finer grain, at the instruction level, using the
vectorization capability provided by XPU through a built-in
vectorized type (vec4f) implemented in top of SSE to
support SIMD. We used the sequential code of the
“blackscholes” application as provided in PARSEC
Benchmark Suite [13,32]. Main processing loop has been
parallelized at the cost of 3 lines of extra-code. Vectorization
has been introduced simply by replacing regular float type
by the "vec4f" vectorized type and by setting increment step
of “parallel_for” to 4 instead of 1. We compared achieved
performance by our application to the five parallel version
provided in the same benchmark suite: OpenMP, TBB,
Pthreads, OpenMP/SSE and PThreads/SSE. We used the
Intel C++ Compiler v12.0.5 and we executed our
benchmark on several multicore platforms. In XPU, optimal
thread count is determined automatically at run-time, for the
other programming models, since thread count is fixed
manually, we choose the thread count giving the best results
for each platform. Figure 19 show the achieved
performances for different data input size on a 16 Threads
SMP platform. Fig. 20 give an overview of the scalability
of each version on several platforms ranging from 2 to 16
hardware threads.

Figure 18. Execution time of the “blackscholes” application for
different problem size on 16 hardware threads platform (SMP with 2 x two

Intel Xeon E5620 at 2.4 GHz)

1 int process(int from, int to, int step, image* images) {
2 for (int i=from; i<to; i+=step) ...
3 }
4 void main()
5 {
6 image * images = … ;
7 task process_t(process, 0,0,0, images);
8 task_group * pf;
9 pf = new parallel_for(0, image_count, 1, &process_t);
10 pf­>run();
11 }

1 #define size 1000000
2 int main()
3 {
4 xpu::vector<float> A(size), B(size), C(size);
5 A = B + C; // Transparent addition on GPU/CPU/...
6 }

Figure 19. Achieved Throughput (Options/sec) .

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we showed how several different types of
parallelism can be easily specified at all level of granularity
inside the HTGG through a friendly programming interface
designed for high productivity and programmability. The
HTGG is a rich intermediate representation of parallel
programs encapsulating not only parallelism and task ordering
specification but also task-data dependencies. At the time of
writing this paper, we try to exploit information about task-
data dependencies in conjunction with the provided description
of the underlying architecture by a dynamic hardware explorer
(processing unit count, execution capabilities, cache topology
and sharing...) to design an efficient cache-aware scheduling
algorithm to achieve efficient execution through improving
spatial and temporal data locality and minimizing
communication overhead. Since all this information become
available just after the HTGG construction, task-processor
mapping can be performed before execution reducing
significantly the importance of the scheduling algorithm
complexity since no overhead will be introduced when
executing the constructs. Task-data dependencies can be also
exploited to build a data-dependency graph automatically at
run-time then translate it into a HTGG. This may allow us to
avoid explicit specification parallelism through the keywords
“parallel” and “sequential”. Instead, programmer can gives
simply a tasks sequence which will be parallelized
transparently at run-time using the data-dependency graph..

REFERENCES

[1] G. Blake, R. G. Dreslinski and T. Mudge, “A Survey of Multicore
Processors”, IEEE Signal Processing , vol. 26, n. 6, pp. 26-37
November 2009

[2] L. J. Karam, I. Alkamal, Alan Gatherer, G. A. Frantz, D. V. Anderson
and B. L. Evans, “Trends in Multicore DSP platforms”, IEEE Signal
Processing , vol. 26, n. 6, pp 38-49, November 2009

[3] W. Wolf, “Multiprocessor System-on-Chip Technology”, IEEE Signal
Processing vol. 26, n. 6, November 2009

[4] H.Park, H. Oh and S. Ha “Multiprocessor SoC Design Methods and
Tools”, IEEE Signal Processing vol. 26, n. 6, November 2009

[5] Seung-Jai Min, Costin Iancu, and Katherine Yelick, “Hierarchical Work
Stealing on Manycore Clusters”, Fifth Conference on Partitioned Global
Address Space Programming Models (PGAS11), Oct 2011

[6] M. D. McCool, "Structured Parallel Programming with Deterministic
Patterns", HotPar'10 Proceedings of the 2nd USENIX conference on
Hot topics in parallelism, 2010

[7] Intel Corporation, Threading Building Blocks, Tutorial rev 1.6,
“http://www.threadingbuildingblocks.org”, 2007

[8] Cilk++ Programmer's Guides, Cilk Art, Lexington, MA, Mar. 16, 2009
[9] M. Aldinucci and M. Danelutto, “Skeleton-based parallel programming:

Functional and parallel semantics in a single shot”, Comput. Lang. Syst.
Struct., 33(3-4). 2007, pp. 179-192

[10] M. Cole, “ Algorithmic Skeletons: structured management of parallel
computations”, Pitman/MIT Press, 1989

[11] M. Cole, “Bringing Skeleton out of the closet: a pragmatic
manifesto for skeletal parallel programming”, Parallel Computing ,
30(3), pp. 389-406, March 2004

[12] J. Lebak, J. Kepner, H. Hoffman and E. Rutledge, “Parallel VSIPL+
+: An open standard software library for high-performance parallel
signal processing” , Proc. IEEE, vol 93, no. 2, pp. 313-330, 2005

[13] C. Bienia, S. Kumar, J. P. Singh and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implications”,
Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, October 2008.

[14] H. Kim, E. Rutledge, S. Sacco, S. Mohindra, M. Marzilli, J. Kepner,
R. Haney, J. Daly, N. Bliss, MIT Lincoln Lab., Lexington, MA,
“PVTOL: Providing Productivity, Performance and Portability to
DoD Signal Processing Applications on Multicore Processors”, in
Proc. High Perfprmance Computing Modernization Program Users
Group Conf. 2008, Seattle, WA, July 2008, pp. 327-333

[15] S. Mohindra, J. Daly, R. Haney, and G. Schrader, “Task and conduit
framework for multi-core systems”, in Proc. High Performance
Computing Modernization Program Users Group Conf., Seattle, WA,
July 2008, pp. 506-513

[16] Horacio González-Vélez and Mario Leyton "A survey of algorithmic
skeleton frameworks: high-level structured parallel programming
enablers" Software: Practice and Experience Volume 40, Issue 12,
pages 1135-1160, November/December 2010.

[17] Mario Leyton, Jose M. Piquer. "Skandium: Multi-core Programming
with algorithmic skeletons", IEEE Euro-micro PDP 2010.

[18] Hahn Kim and Robert Bond, “Multicore Software Technologies”,
IEEE Signal Processing, vol. 26, no. 6, pp. 80-89

[19] Luis Mura E Silva and Rajkumar Buyya, “Parallel Programming
Models and Paradigms”, Citeseer Cluster Computing, vol. 2, 1999,
pp. 4-27

[20] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L.
Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally and P. Hanrahan.
“Sequoia: Programming The Memory Hierarchy” in Proc.
Supercomputing 2006, Tampa Bay, FL, Nov. 2006

[21] J. Hoberock and N. Bell, “Thrust”, http://code.google.com/p/thrust/
[22] J. Kepner and J. Lebak, “Software technologies for high-

performance parallel signal processing”, Lincoln Lab. J., vol. 14, no.
2, pp. 181-198, 2003

[23] H. Singh, “Introspective C++”, Thesis, Virginia Polytechnic
Institute, 2004

[24] J. Koskinen, “Meta-programming in C++”, March 9, 2004
[25] A. Munshi, “The OpenCL specification version 1.1”, Khronos

Group, January 6, 2011
[26] “NVIDIA CUDA Programming Guide Version 2.2.1”, NVIDIA

Santa Clara, CA, May 26, 2009
[27] H.Vandierendonck, P. Pratikakis and D. S. Nikolopoulos, “Parallel

Programming of General-Purpose Programs Using Task-Based
Programming Models”, Proceeding HotPar'11 Proceedings of the 3rd
USENIX conference on Hot topic in parallelism USENIX
Association Berkeley, CA, USA 2011

[28] D. Lin, X. Huang, Q. Nguyen, J. Blackburn, C. Rodrigues, T. Huang,
M. N. Do, S. J. Patel and W. W. Hwu, “The Parallelization Of Video
Processing”, IEEE Signal Processing , vol. 26, n. 6, pp 38-49,
November 2009

[29] S. T. Klein and Y. Wiseman, “Parallel Huffman Decoding”,
Proceeding DCC '00 Proceedings of the Conference on Data
Compression IEEE Computer Society Washington, DC, USA 2000

[30] Northrop Grumman Corporation - IT Solutions. CLOC - Count Lines
Of Code v1.53, http://cloc.sourceforge.net

[31] C. Teijeiro, G. L. Taboada, J. Tourino, B. B. Fraguela, R. Doallo, D.
A. Mallon, A. Gomez, J. C. Mourino and B. Wibecan, “Evaluation of
UPC Programmability using class room”, Proc. of the 3rd Conf. on
Partitioned Global Address Space Programing Models ACM, New
York, USA 2009

[32] PARSEC Benchmark Suite v2.1, “http://parsec.cs.princeton.edu/”

[33] Microsoft Task Parallel Library, “http://msdn.microsoft.com/en-
us/library/dd537608.aspx”

	I. Introduction
	II. Related works
	III. A Task-Based Parallelization Methodology
	A. The Hierarchical Task Group Graph

	IV. Programming Interface
	A. Example of a multimedia application
	1) Sequential version
	2) Parallelization

	B. Task Definition
	1) POSIX Threads Programing Model
	2) Threading Building Blocks
	3) XPU

	V. Task Parallelism
	A. Transparent Shared Data Detection and Protection
	B. Experiment: Programmability Evaluation

	VI. Temporal Parallelism
	VII. Data parallelism
	A. Parallel loop
	B. Parallel Vector: Massive data parallelism on heterogeneous multicore architecture.
	C. Brief overview of XPU performances

	VIII. Conclusion and Future Works

