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Abstract— The  continuous  proliferation  of  multicore  
architectures has placed a great pressure on developers to  
parallelize  their  applications  accordingly  with  what  such  
platforms  can  offer .  Unfortunately,   traditional  low-level  
programming  model  exacerbate  the  difficulties  of  
building  large  and  complex  parallel  applications.  High-
level  parallel  programming models are in high-demand as  
they reduce the burdens of programmers significantly and  
provide  enough  abstraction  to  accommodate  hardware  
heterogeneity.  In  this  paper,  we  propose  a  flexible  
parallelization  methodology,  and  we  introduce  a  new  
task-based  hybrid  programming model  (MHPM) designed  
to  provide  high  productivity  and  expressiveness  without  
sacrificing  performance.  We  show  that  MHPM  allows  
easy  expression  of  both  sequential  execution  and  several  
types  of  parallelism  including  task,  data  and  temporal  
parallelism  at  all  levels  of  granularity  inside  a  single  
structured  homogeneous  programming  model.  In  order  to  
demonstrate  the  potential  of  our  approach,  we  present  a  
pure  C++  implementation  of  MHPM,  and  we  show  that,  
despite  i ts  high  abstraction,  it  provides  comparable  
performances to lower-level programming models.

Keywords:  Parallel  Programming Model,  Structured  
Parallelism,  Skeleton,  Execution  Patterns,  Parallel  
Constructs,  Multicore

I.  INTRODUCTION 

  With the rise of Chip Multicore Processor (CMP), parallel 
computing hardware is getting widely available at many 
scales: from personal computers to embedded systems to high 
performance supercomputers...[1,2,3,4]. While concurrent 
programming is still distant from the average sequential 
programmers, this proliferation of  multicore architectures has 
placed a great pressure on mainstream developers to 
parallelize their applications as much as possible to take 
advantage of theses platforms. Parallel programming using the 
traditional thread-and-locks  programming model remains a 
hard task for most of the  programmers since it  is time 
consuming, error prone  and requires strong knowledge and 
skills. Consequently, programmers are facing  a  complex 
productivity-performance trade-off where they should extract 
enough parallelism to justify the use of a dedicated parallel 
programming library. Moreover, parallel hardware is becoming 
increasingly heterogeneous: a modern work  station  may 
includes two or more multicore processors with several 
manycore GPUs...  In  order  to  target  such  architectures,  a 
programmer  must  have  a  deep  understanding  of  the  target 
hardware and should often use several disparate programming 

models  making  parallel  programming harder  and  resulting 
into too poor productivity. Exploiting software parallelism on 
these emerging heterogeneous multicore architectures has 
become a great design challenge which outline the need for 
new technologies to make multicore processors more 
accessible to a larger community [18].

  Due to this technological context, two major needs  have 
been emerged: in one hand, a high hardware abstraction to 
hide details of the underlying platform providing portability , 
scalability and accommodating its heterogeneity. In the other 
hand, programmability improvement is in high-demand as it 
increase productivity and minimize programming 
complexity.  These two needs should be satisfied without 
sacrificing performance and forward scalability. 
Programmability is  achieved by minimizing parallel 
development cost in term of time, complexity and required 
tools in order to remain as close as possible to traditional 
sequential development. Parallel development overhead 
comes mainly from programming paradigms-related routines 
such as synchronization, communication, shared memory 
management, workload scheduling... These routines 
introduce a  significant amount of extra-code related to 
parallel programming paradigms and not to the user 
application  itself. Additional effects such as hard debugging 
and difficult performance tuning are also induced.

 Skeleton-based programming,  often referred as structured 
parallel programming [10,11], is a promising high-level 
approach which satisfy most of these requirements and 
attempts to replace the traditional low-level thread lock 
model with better abstraction and easier way to express 
parallelism through a collection of recurrent parallel patterns 
[6,9]. It aims mainly to provide a good trade-off between 
programmability, portability, reusability and performance 
increasing in order to improve programmer productivity by 
letting him focus on algorithms instead  of  hardware 
architectures. In this paper, we introduce a pattern-based 
hybrid  programming model named MHPM (Multiscale 
Hybrid Programming Model)  designed to provide high 
productivity without sacrificing execution efficiency. The 
philosophy behind its design is “Easing  parallelism 
expression without loosing execution efficiency”.   In MHPM 
C++  implementation,  productivity is promoted through 
providing a friendly and intuitive programming interface 
allowing easy expression of  both sequential execution and 
several types of parallelism, including task parallelism, data 
parallelism and temporal parallelism  (pipelining), at 
multiples level of granularity inside a single homogeneous 



and  structured  model through an extendable collection of 
execution patterns or algorithmic skeletons. 

  In  order  to  illustrate  the  potential  of  MHPM  and  the 
simplicity  of  its  programming  interface,  Fig.  1  shows  an 
irregular hierarchical task graph representing multiple fork/join 
execution pattern  at  several  level  of  granularity,  and  Fig.  2 
show how parallelism in this relatively complex graph can be 
expressed through a single C++ line of code (line 5) without 
altering the original sequential code. Each task of this graph 
can be easily defined, at the cost of a single line of code, from 
a function, a class method or a lambda expression allowing 
direct  reuse  of  sequential  code  without  any  constraints  on 
function or  class  method prototypes  and without  modifying 
their  code.  Moreover, in MHPM, concurrent shared data 
access, and therefore  potential “race condition”, is detected 
transparently, then  shared data is protected automatically at 
any level of granularity through critical sections relieving the 
programmer from managing shared data  by himself such in 
near-all parallel programming model where programmer has to 
manage it manually using mutual exclusion primitives.

Figure 1. Example of task graph specifying task parallelism and 
task-data dependencies (r: read, w:write).

Figure 2. Task parallelism expression in MHPM

  MHPM is based on a powerful and rich intermediate program 
representation,  named  the  Hierarchical  Task  Group  Graph 
(HTGG).  HTGG  is  the  heart  of  MHPM  which  specify 
sequential execution and several types of parallelism at many 
levels  of  granularity  disregarding  the  available  amount  of 
parallelism  in  the  target  program.  HTGG  is  built  from  an 
extendable collection of nestable execution patterns which can 
be used hierarchically inside each other allowing progressive 
parallelization,  better  granularity  control  and  data,  task  and 
temporal parallelism integration inside a single homogeneous 
and highly structured programming model. Fig. 3 shows how a 
sequential program can be parallelized through specifying 
parallelism in the HTGG and gives an overview of MHPM 
architecture which is mainly composed of :

 A C++-based programming interface  which exploit 
C++ meta-programming  capabilities [24] to ease 
expression of parallelism in  the HTGG.

 A Hardware Abstraction Layer (HAL) which 
provides dynamically a description of the 
underlying architecture and accommodate hardware 
heterogeneity: HAL  uses  dynamic hardware 
exploration to detect available computing resources 
and their properties (available processing unit, their 
execution capabilities, processor cache topology …)

 An Intelligent Run-time System (IRS) which exploit 
information,  extracted  transparently  from  both 
hardware  description  and  used  execution  patterns 
(task  ordering  and  task-data  dependencies)  to 
perform  efficient  execution  on  the  underlying 
architecture.

  The MHPM is implemented as a C++ framework named 
XPU.  This framework offers an intuitive, easy-to-use and 
light-weight programming interface to design parallel 
applications or  parallelize  sequential ones.  At the opposite 
of many parallel programming models which introduce new 
languages, define compiler annotations or extends existing 
language and thus  requires specialized compiler,  extra-
hardware, or  virtual  machines  [4,18]...  XPU  is  a  pure 
software technology entirely based on the traditional standard 
ISO C++ language and requires nothing more than a standard 
C++ compiler to be used, and therefore,  improve learning 
curve steepness and is easily portable to many systems. 

  In this  paper we will  focus mainly on the programming 
interface  and  the  program parallelization  methodology:  we 
show  how  a  sequential  program  can  be  progressively 
parallelized and represented as a  HTGG, then we explains 
how  several  types  of  parallelism  as  well  as  sequential 
execution can be specified easily in the HTGG through the 
provided  collection  of  nestable  execution  patterns.  We 
discuss  how  our  programming  interface  is  able  to  extract 
transparently information on task-data dependencies and how 
this information can be exploited to improve productivity and 
provide  dynamically  efficient  execution  on  the  underlying 
multicore architecture.  Finally we give a brief overview of 
achieved performances by XPU.  Since hardware abstraction 
and  task  scheduling techniques  are  not  the  subject  of  this 
paper  the  HAL and IRS components  will  be  discussed  in 
dedicated papers.

II. RELATED WORKS 

  Structured parallel programming with deterministic patterns 
[6] is a high-level  approach mainly based on a collection of 
recurrent parallel execution patterns, often referred  as 
algorithmic skeletons [9,10,11] or parallel constructs,  which 
abstract  program  description  and  hides low-level 
multithreading details and many complexities inherent in 
parallelism from the programmers [16,17]. These reusable 
patterns automate many parallel paradigm-related routines 
such as synchronization, communication, data partitioning or 
task scheduling... and handles them internally. For instance, 
many  task-based  structured  programming models such as 
Thread Building Blocks [7] and Cilk++ [8] offer a set of 
execution patterns which handles transparently task 
scheduling, data partitioning and load-balancing. Unified 
Parallel C (UPC) Task Library HotSLAW [5] abstracts 
concurrent task management details and provides transparent 
data communication and dynamic load balancing [5,18].

1 void main() {
2  task ta(function, data_1),      // task definition
3       tb(&o, cls::method, data_2), ...;
4  task_group * program;
5  program = parallel(sequential(ta, parallel(td,te)), 
6                     sequential(tb, tc));
7  init();
8  program>run(); // 'data_4' protected automatically
9  clean();
10 }

 



Figure 3. Overview of the intermediate program representation (HTGG) and MHPM architecture.

Sequoia [20] is another task-based programming model 
which offer transparent data management in deep processor's 
memory hierarchy including data allocation and 
communication through the memory tree [18]. 

  By decoupling the programming model from the underlying 
architecture, pattern-based approach offer also a good 
hardware abstraction accommodating architecture 
heterogeneity, opening the path to more hardware support 
and allowing the programmer to focus on algorithms instead 
of hardware architecture. For instance MIT-LL is developing 
the Parallel Vector Tile Optimization Library (PVTOL) [14] 
in order to expand parallel programming constructs in 
Parallel Vector Library (PVL) [22] and VSIPL++ [12] to 
support both homogeneous and heterogeneous multicore 
architectures [18]. 
  
   Despite their ability  to express parallelism at the cost of 
relatively little amount of programming effort, most of  task-
based parallel programming models target specific 
application domains such as signal processing in the case of 
PVL, PVTOL and VSIPL++ and offer limited collection of 
execution patterns to express specific type of parallelism: for 
instances if Cilk++ allows easy expression of simple and 
nested task parallelism, its ability to express temporal 
parallelism, such in the pipeline execution pattern, is much 
harder and requires verbose restructuring of the code [27]. 
Finally, in spite of their high hardware abstraction, most of 
known task-based programming  are not yet able to support 
heterogeneous multicore architectures requiring programmers 
to use one or more additional programming models, such as 
OpenCL[25] or CUDA[26] to support GPGPU for example, 
in conjunction with  another task-based programming model 
to exploit multicore CPU and SMP platform, and perhaps a 
third programming models such as MPI to support 
distributed memory architecture... resulting into 
heterogeneous programming model hard to use and maintain 
and requiring multiple skills and deep understanding of 
different hardware and software components. These 

constraints results in a severe productivity loss and can be 
discouraging for the average sequential programmers.

   Main-stream applications and general-purpose programs are 
“more-or-less”  parallelizable depending on their nature: 
programs may expose a varying amount of parallelism and 
consequently different parallel-sequential ratio: : many known 
scientific simulations and signal processing problems are 
massively parallelizable however many other general-purpose 
applications are much less parallelizable and exposes much 
more sequential execution constraints such many video 
decoding algorithms [28] and compression algorithms  [29]. 
This outlines the need to express both parallel and sequential 
execution into a single homogeneous hybrid programming 
model able to specify both sequential and parallel execution 
in order to provide a generic and  non-domain specific 
programing model. Also, a program may exposes several 
types of parallelism often difficult to express using a single 
programming model so programmer uses several disparate 
programming models inside the same application resulting 
into ineffective uses of processors caches, poor load-
balancing and potentially system overloading with many 
independent run-times. 
  
   MHPM  try to bypass  these limitations by allowing easy 
expression of both  sequential execution and several types of 
parallelism at multiples level of granularity inside a single 
homogeneous model, so a programmer can parallelize its 
application as much as possible by  using a single flexible 
programming model. Since  it  allows the specification of 
parallel execution as well as sequential one, MHPM target a 
wide range of programs from various application domains: 
from highly parallelizable applications to much less 
parallelizable ones and remains valid even for fully sequential 
ones.  Since  promoting productivity is one of our primary 
design goals, MHPM  handle implicitly many parallel 
programming paradigm-related routines such as 
synchronization, communication, shared  memory 
management …  and therefore, hide many complexities 



inherent in parallelism from users. The internal  design of 
parallel and sequential patterns allows transparent extraction 
of valuable information on task-data dependencies enabling 
an intelligent run-time system to detect shared data between 
tasks and protect it transparently against conflictual accesses 
often referred as “race condition”.

III. A TASK-BASED PARALLELIZATION METHODOLOGY

  Task-based programming is based on the decomposition of 
a program into a set of tasks which cooperates with each 
others to perform the main work of the application program. 
Tasks granularity can be controlled and specified by the 
programmer: a program is basically the main task which is 
split into several coarse-grain tasks which may be split, in 
turn, into finer-grain ones, and so on... until we reach the 
finest-grain allowed by the host programming language (cf. 
Fig. 4). 

Figure 4.  Program decomposition at many granularity levels

  Each task of the application program performs a piece of 
work in which it may consumes or produces data, i.e., read or 
write private or shared data. In order to speedup optimally 
program execution on parallel computing architectures, we 
have to extract the maximum amount of parallelism. The 
ideal case, is the one in which all tasks, at the finest possible 
granularity level, doesn't exposes any data or control 
dependencies, so they can be executed simultaneously (cf 
Fig. 5).   Unfortunately, real world programs are “more-or-
less”  parallelizable depending on their natures: while many 
scientific simulations exposes massive data parallelism and 

Figure 5. Ideal Parallel Program

thus are highly  parallelizable , many other general-purpose 
applications, which represents the wide majority in the 
software landscape, are much less parallelizable due to data 
and control dependencies and explicit task ordering. Indeed, 
these algorithmic  constraints introduce needs for 
synchronization and ordering to preserve memory coherency 
and algorithmic consistency. Consequently, each subset of 

the tasks composing the program can be executed either in 
parallel or sequentially depending on these constraints which 
define thus the parallel-sequential code ratio or the available 
parallelism in the target  program.   At the end of the 
parallelization  process, we obtain a  hybrid execution graph 
containing both sequential and parallel sections (cf Fig. 6). 
The available  parallelism  vary depending on applications 
natures, but the model remains usable for either highly and 
weakly parallelizable programs and even for fully sequential 
ones.

Figure 6. The Hybrid Programing Model specifies sequential 
execution and several types of parallelism  at all level of granularity.

 Tasks may expose locally several types of parallelism 
including nested task parallelism, data parallelism at thread 
through  parallel  loops  or  instruction  level  through 
vectorization  or  temporal parallelism through  pipelined 
execution.  These  execution  configurations  can  be  specified 
into  a  collection  of  execution  patterns.  For  the  sake  of 
simplicity,  we  use  interchangeably  “execution  pattern”, 
“construct” or “skeleton” to indicate a structure storing a set 
of tasks and specifying their execution configuration.

A. The Hierarchical Task Group Graph  

   In order to accommodate execution patterns heterogeneity, 
so they can fit into a single homogeneous structure 
representing the program, we define a common abstract 
constructs named “task_group”. All our execution patterns 
implement this common interface: for example 
“sequential_tasks”  are a group of tasks scheduled to run 
sequentially while “parallel_tasks”  are a group of tasks 
scheduled to be executed simultaneously (a basic fork and 
join pattern) and “pipeline” is a group of communicating tasks 
running as a chain of overlapped processing stages... etc (cf. 
Fig.  7).  These  task  group  implementations  can  be  easily 
extended  to  express  more   execution  patterns  and  meet 
specific  programmer needs in all  applications domains.  We 
note the “Task” is also, by design, a “task_group” containing a 
single  task.  Consequently  most  provided  constructs  are 
nestable and can be used hierarchically inside each other.
  
  By expressing  parallelism at  several  level  of  granularity 
using  these  patterns,  we  obtain  a  hierarchical  structure 
composed from task groups  of “task_group”, this structure is
named  HTGG.  Task  ordering  is  specified  inside  each 
constructs, so when a task group is called, it execute its sub-
task groups following the specified execution pattern and each 
of these sub-task groups will, in turn,do the same with their 
sub-task group ...etc. 



Figure 7. A Simplified overview of  the internal software 
design accommodating constructs heterogeneity so they can fit inside a 

single homogeneous and hierarchical structure: The HTGG

IV. PROGRAMMING INTERFACE

  The HTGG is a complex structure containing several 
heterogeneous constructs to express different execution 
patterns. It encapsulates not only the code of tasks but also 
specify task execution ordering and contains many other 
information about task-data dependencies and shared 
memory and provides an interface to specify the  task-
processor mapping.  In order to build easily this complex 
structure, we tried to exploit C++ Meta-programming 
capabilities to offer an intuitive interface to build the HTGG 
at the cost of a little amount of paradigm-related extra code 
and to promote reuse of sequential code with the lowest 
possible modification/alteration. C++ Meta-programming 
techniques imply massive uses of templates which offer great 
compile-time optimization but also may make the code less 
readable and relatively verbose on programming errors. In 
our case, we used templates internally behind front-end 
polymorphic functions to relieve the user from specifying 
explicitly argument types and count when building execution 
patterns. Consequently, the resulting programming interface 
is easy-to-use and doesn't expose any template structure to 
the programmer.  As we progress in this section we will 
mention the different meta-programming techniques used to 
simplify the programming interface and to provide advanced 
features such as transparent shared memory detection and 
protection.

A. Example of a multimedia application 

  In order to illustrate the potential of our programming 
model, we consider a simplified example  of  a  multimedia 
application. In the  begining, we introduce the sequential 
version  written in C++ and we show how we can parallelize 
it progressively at many levels of granularity the collection of 
execution  patterns provided by XPU.

1) Sequential version
  Every frame of the input stream of our multimedia 
application contains sound and images. Our program process 
sound samples, and images before encoding them  into  a 
common compressed output bitstream. Fig. 8 and 9  gives a 
general overview of the sequential program algorithm and 
the associated skeleton of sequential c++  code. In the  first 
place we don't discuss implementation details of each block 
of the algorithm, we consider simply a set of functions coded 
using the traditional sequential programming model, (They 

may be functions, class methods, or even remote function 
calls...), we give just their prototype without discussing their 
internal implementations to illustrate how we can reuse 
directly sequential code without significant modifications.

Figure 8. Sequential version of the multimedia application

2) Parallelization 

  In a first time we decompose our program into tasks simply 
by reusing the sequential functions as tasks. By looking to our 
sequential  program  as  shown  in  Fig.  9,  we  can   identify 
coarse-grain task parallelism between audio processing and
video processing which can be executed simultaneously since 
they  are  independent  so  we  can  start  by  parallelizing  our 
program through a large grain fork/join pattern. In a next step, 
and at a finer grain, if we analyze each task of both the audio 
and  video  processing  task  group,  we  can  identify,  locally, 
several  parallelism types including data parallelism through 
parallelizable for loop such in “audio_encode_samples” task,
temporal parallelism by using the pipeline pattern in the audio 
and  video  fileting  tasks  and  finally  massively  parallel 
operations on large vector of data (massive SIMD operations) 
such as in the last stage of “process_video_frame” pipeline : 
the “multiply”  task.  We can go further  and parallelize at  a 
finer grains to extract the maximum amount of parallelism. 
Final  parallel  program  structure  is  relatively  complex, 
however, in the next paragraphs, we show how parallelism in 
this  program can be expressed at the cost of a little amount of 
extra-code and thus little programming effort and we outline 
the  flexibility  of  our  model  which  allow  progressive 
parallelization of the target program. 

B. Task Definition

  Decomposing a program into a set of pieces of code is the 
first step in the  parallelization process in most of  parallel 
programming models, in low-level thread-lock programming 
model,  these pieces  of  code are called callbacks,  in higher 
level  task-based programming models  this  piece of  code is 
called  task.  We  outline  the  high  programmability  of  our 
programming  model  by  comparing  it  to  lower  level  one 
(PThreads) and the high-level task-based programming model 
Threading Building Block (TBB). 

1  int main()
2  {
3    char * in_stream, * out_stream, * audio_samples;
4    image *  video_frames;
5    while (input_stream_available)
6    { 
7      load_input_stream(in_stream);
8      extract_audio_samples(in_stream, audio_samples);
9      process_audio_samples(audio_samples);
10     encode_audio_samples(audio_samples);
11     write_audio_to_stream(out_stream, audio_samples);
12     extract_video_frames(in_stream, video_frames);
13     process_video_frames(video_frames);
14     encode_video_frames(video_frames);
15     write_video_to_stream(out_stream, video_frames);
16
17     write_output_stream(char * out_stream);
18    }
19 }

1  int load_input_stream(char * in_stream);
2  int extract_audio_samples(char * in_stream, char * audio_samples);
3  int process_audio_samples(char * audio_samples);
4  int encode_audio_samples(char * audio_samples);
5  int write_audio_to_stream(char * out_stream, char * audio_samples);
6  int extract_video_frames(char * in_stream, char * video_frames);
7  int process_video_frames(char * video_frames);
8  int encode_video_frames(char * video_frames);
9  int write_video_to_stream(char * out_stream, char * video_frames);
10 int write_output_stream(char * out_stream);



Figure 9. This multimedia application can be parallelized at several level of granularity: task parallelism between audio and video processing and 
local data and temporal parallelism inside several tasks can be expressed in the HTGG.

1) POSIX Threads Programing Model
  In the traditional low-level thread-lock model, this piece of 
code is called callback and plays the role of tasks in task-
based programming model and is the main component of 
multi-threaded applications. If we consider C++ language, 
the host-language of our programming model, sequential 
code is often severally altered since the targeted piece of code 
has to meet the native callback prototype “void * 
function(void *)”  which imposes many restrictions to the 
programmer when parallelizing application or reusing 
sequential code : only static functions can be used as 
callback, dynamic class method can't be used directly, in 
addition, consumed and produced data should be stored in a 
common intermediate structure then extracted and restored to 
their original type through type casting. These constraints 
lead to many modification of the sequential code, usually a 
lot of programming paradigm-related extra-code and thus 
make the code less readable, error-prone and difficult to 
maintains. This lack of flexibility and programmability 
amplify the burden of the programmer dramatically and make 
the reuse of sequential code difficult.

2) Threading Building Blocks
 TBB is a high level programming model which provides 
more abstraction and allows the reuse of sequential code in a 
less restrictive way. However, significant modification to 
sequential code are required: task code and its consumed or 
produced data should be encapsulated in a class respectively 
as class members and class methods with specific prototype. 
Consequently, sequential code can't be reused directly and 
has to be significantly transformed. This leads to verbose and 
less readable code and requires significant programming 
effort.

3) XPU
  Since promoting the reuse of sequential code is one of the 
primary design goals of XPU, we tried to outcomes the 

previously enumerated limitations through a more flexible 
task design. In MHPM, by design, a task is basically an 
abstract callable piece of code which can be executed. This 
piece of code may consume or produce data. Data are passed 
in the form of arguments to each task. Fig. 10 show how a task 
can be created from a function or a class method disregarding 
its argument count or type and its return type. 
A more advanced implementation of tasks for static and 
dynamic distributed systems are in development at the time of 
writing of this paper. We exploit C++ meta-programming 
capabilities to provide a friendly programming interface 
allowing simple and fast definition of tasks from existing code 
to promote reuse of code and improve programmer 
productivity. At the same time, by combining polymorphism 
and several C++ template programming techniques we take 
advantage of compile-time compiler optimization to produce 
efficient code. Moreover, meta-programming techniques allow 
us to investigate used data type ,through Compile-Time Type 
Identification  CTTI  [23,24],  and  therefore,  detect 
transparently  task-data  dependencies  at  compile-time.  This 
information are exploited to detect automatically concurrent
 accesses to shared data  in the HTGG and protect it against 
potential race condition. In ongoing works, we try to exploit
this same information  to perform efficient  execution on the 
underlying  architecture  dynamically  by improving  temporal 
and spatial data locality through  cache-aware task scheduling.
 
   When defining a task, data access is specified implicitly or 
explicitly through the passed argument. By default, argument 
passed by value are considered as a local  read access data, 
arguments passed by pointer are considered as a potentially 
shared data accessed in write mode,  argument passed through 
constant  pointer  are considered as  a potentially shared data 
accessed in “read only” mode (it can be explicitly specified 
using the __read_only( ) macro or simply passed as a constant 
pointer  argument),  finally,  case  of  arguments  passed  by 
references is not yet treated due to value/reference ambiguity 
issue with some compilers. 



Figure 10. Task definition from different pieces of code.

  As chown in Tab. I, despite its high abstraction, task call 
introduce negligible execution overhead.

TABLE I. TASK CALL OVERHEAD (CLOCK CYCLES): COMPARISON 
BETWEEN CALLING TASK ENCAPSULATING FUNCTION CODE AND DIRECT 

FUNCTION CALL.

Compiler C++ GNU v4.6.1 Intel v12.0.5

Optimization -O1 -O2 -O3 -O1 -O2 -O3

Function call 2358 2356 962 1778 966 966
Task  call 2356 2358 1038 1782 968 968

Overhead -2 2 76 4 2 2

V. TASK PARALLELISM

  If we consider data dependencies  in our multimedia 
application example, video processing and audio processing 
can be viewed as two coarse-grain independent tasks and can 
be executed in parallel. However input stream loading task 
should be executed before any stream processing. Finally, 
output stream writing task can't be executed before 
processing tasks are done. Task ordering and parallelism can 
be simply specified as in the Fig. 11 and expressed using 
XPU as in Fig. 16.

  Task ordering can be specified recursively using two 
keyword “parallel“ and “sequential” whatever the task graph 
complexity, irregularity or depth. These functions take as 
arguments, two or more “task” or “task_group“. At the end of 
task ordering specification we obtain a HTGG which specify
parallelism and sequentiality at all levels of granularity. Once 
the tasks graph constructed, tasks are ready to be executed in 
the specified order. Since tasks ordering specification is 
inherent in the HTGG, thread creation, task spawning and 
synchronization (fork and join) are managed transparently by 
the run-time scheduler which ensure the execution of tasks in 
the specified order. If we summarize the previous, expressing 
parallelism in our programing model can  be performed, 
mainly, in three steps:  tasks definition, HTGG construction 
and finally HTGG execution by calling the root task.

Figure 11. Intermediate program representation

Figure 12. We express task parallelism the multimedia application 
in two steps to have more readable code.

   Separating task definition and graph construction from tasks 
execution allows our run-time system to exploit the valuable 
information about task-data dependencies encapsulated in the 
tasks as well as the explicit parallelism specification, inherent 
in the tasks graph, to  perform several operations  before 
executing the task graph. In  order  to  promote productivity, 
speedup and simplify parallel programming MHPM automates 
many parallel-programming paradigm-related routines such as 
shared  memory  management,  tasks  synchronization  and 
performance tuning. In the next paragraph we review briefly 
transparent shared data detection and protection feature.

A. Transparent Shared Data Detection and Protection

  We  can  remark,  in  the  definition  of  the  task 
“write_video_stream” and “write_audio_stream”, that both of 
these tasks write their output bitstream into the  same common 
“output_stream” (cf. Fig. 8 and 11). When building task graph, 
the  run-time  system  will  check  dynamically  task-data 
dependencies  to  determine  which  task  accesses  which  data 
and how it is accessed (write or read mode), then it will look 
for shared data in parallel  sections at  all  granularity levels. 
Finally, if two or more concurrent  tasks accesses shared data 
in  write  mode,  these tasks  will  be transformed into critical 
sections  by  associating  transparently  a  “lockable”  (an 
abstraction  of  mutual  exclusion  mechanism:  mutex  and 
spinlock are an example of implementations of the “lockable” 
interface.) to the shared data so it  will  be protected against 
potential  race-condition  when executing the  tasks.  We note 
that  this  technique  suppose  no  unsafe  direct  accesses  from 
tasks to global variables since this type of accesses is out of 
the control of our run-time system which uses arguments list 
to  determine  task-data  dependencies.  Consequently, 
programmer is invited to specify explicitly used  data in its 
argument  list  when  defining  tasks  and  should  not  hides 
pointers to shared data inside complex structures.

1  class image
2  {
3    public:
4      int sharpen(int val);
5      int blur(...);
6    ...
7  };
8  int main( )
9 {
10   image img(“img.jpg”);
11   task sharpen_t(&img, &image::sharpen, 11);
12 }

1 int main( )
2  {
3   float * f;
4   xpu::task low_pass([](float * samples, int freq)
5   {...code... }, audio_samples, 7000);
6  }

1  int main()
2  {
3   ...
4   task_group * process_audio = sequential(extract_audio_t,
5                                           process_audio_t,
6                                           write_audio_t);
7   
8   task_group * process_video = sequential(extract_video_t,
9                                           process_video_t,
10                                          write_video_t);
11  task_group * program ;  
12  program = sequential(load_stream_t,
13               parallel(process_video, process_audio),
14               write_stream_t);
15  
16  while (input_stream_available)
17        program.run();
18 } 

1  int load_input_stream(char * in_stream);
2  int extract_audio_samples(char * in_stream, 
3                            char * audio_samples); 
4  int main()
5  {
6   task load_stream_t(load_input_stream, in_stream);
7   task extract_audio_t(extract_audio_samples,
8                        __read_only(in_stream), 
9            audio_samples);
10   ...
11   load_stream_t(); // or load_stream_t.run() to run task
12 }



   Specifying in/out data accesses for each task can be seen as a 
constraint, but also it can be seen as a  good practice which 
make code easier to read, maintain and parallelize. Following 
this unique rule, the IRS will gantry transparent management 
of shared data and prevent potential “race-condition“ 
automatically. Breaking a big grain task, such video and audio 
processing tasks in our example, into a sequence of finer grain 
tasks can be useful if this task share data with parallel tasks: 
since the task in this case is executed inside  a critical section, 
dividing this task into a set of sub-tasks may reduce critical 
section size and maximize parallelism.

B. Experiment: Programmability Evaluation

  In this experiment, we tried to evaluate XPU 
programmability in  comparison  with TBB. A traditional 
approach for quantifying programmablity or required 
programming effort is to compare the parallel program to its 
sequential version  in term of the number of lines of  code [31]. 
We consider a simple sequential application in which we call 
successively 7 functions, this application can be parallelized as 
shown in our first example in Fig. 1. We can define a task for 
each function when required. We note that “data_4” is shared 
between two parallel tasks (4 and 5). We tried to express task 
parallelism as specified in the task graph using XPU and TBB 
then we counted the required parallel paradigm-related extra-
code line and the  reused sequential code lines. We used 
“CLOC”  [30] to count lines of code in each version, we 
removed all  blank lines and comments, we verified we have 
exactly the same number of lines of code found by CLOC, 
then we used the classic “comm” tool, available in most UNIX 
systems, to determine the number of lines of both reused 
sequential code and required extra-code.

  In the TBB version we define  6  task  classes:  3  tasks  to 
encapsulate  function  1,2  and  3,  one  intermediate  task  hold 
these  3 tasks,  another intermediate  task to call successively 
function 2 and 5 and finally we define the root task that spawn 
these intermediate  tasks. We use TBB task parallelism 
primitives: allocating, spawning and waiting for root and child 
tasks.  A TBB mutex is used to protect shared data “data_4” 
from race condition [7]. XPU  version require a single line to 
define a  task for  each  function in the parallel section and 
another  2  lines to build the task graph and execute it.  The 
sequential code of functions doesn't require any modification. 
The shared data is detected and protected automatically by the 
run-time system. As show in Fig. 13, while XPU version reuse 
80 lines among the 86 lines of sequential code and requires 
only 10 extra-lines for parallelization, the TBB version reuse 
42 lines  and  requires  140 lines  of  parallel  paradigm-related 
extra-code.

Figure 13. programming models in term of required programing 
effort: required extra-code and reuse of sequential code

VI. TEMPORAL PARALLELISM

  MHPM enables the programmer to express temporal 
parallelism easily  through the pipeline execution pattern. 
Pipeline pattern implements the abstract «task_group» 
interface and thus can be used at any level in the HTGG as 
the other «task_group» implementations.  The «pipeline» 
pattern can be constructed from a set of tasks used as 
overlapped processing stages. As shown in Fig. 14, these 
stages are executed to process elements of a data container: 
each element is processed by the first stage or the “head” of 
the pipeline, when finished, this stage notify its successor 
that the element is ready to be processed by the next stage, 
then it  moves to the  next data  element. This cycle is 
reproduced for each stage until we reach the tail of our 
pipeline. So sequentiality of the execution is satisfied at the 
element level, but parallelism is exploited at the data 
container level increasing therfore task throughput. Pipeline 
is a recurrent execution pattern in many application domains 
such as signal, image and more generally stream processing. 

Figure 14. Internal Pipeline Architecture

  In our example, pipeline pattern can be used in the image 
processing task  “process_video_frame”  in which many 
filters are applied to each frame of the incoming stream. 
Filters should be  executed in the specified order for each 
image of the input stream. In order to satisfy filter ordering, 
filters can be used as pipeline stages so each image is 
processed by the first filter then can be immediately 
processed by the next filter without waiting until all images 
are processed. We note that the first function  argument is 
used as an index of the element to be treated, it is updated 
by the pipeline constructs for each stage until all elements 
are processed by all stages. Fig. 15 show how we can build 
a 4-stages pipeline. This pipeline can be used to parallelize 
the task “process_video_frames”  of  our  multimedia 
application.

Figure 15. An example of four stages pipeline 

1 void sharpen(int i, vector<image> * imgs) // i = frame index
2 { imgs[i]>sharpen(); }
3 
4 void multiply(int i, vector<image> * imgs, image * mask)
5 { imgs[i]>multiply(mask); }
6
7 int main()
8 {
9   vector<image> frames(size); 
10  ... 
11  task sharpen_t(sharpen, 0, &frames), 
12       blur_t(blur, 0, &frames),
13       multiply_t(multiply, 0, &frames, &mask);
14 task_group * process_image = pipeline(size, sharpen_t, 
15                                              blur_t, 
16                                              contrast_t, 
17                                              multiply_t); 
18  process_image>run(); // frame index “i” will be updated 



VII. DATA PARALLELISM

  Data parallelism refers to scenarios in which the same 
operation is performed concurrently on elements of  a  data 
container [33]. Data parallelism can be specified  at different 
levels of granularity and can be implemented at thread level or 
at the  instruction level.  In data parallel operations, data is 
partitioned so multiple threads can operate on different data 
partition concurrently. XPU enables the programmer to express 
data parallelism at thread level (TLP) through parallelized for 
loop  , at instruction level (ILP) through a set of vectorized 
data types (SIMD) and at both through parallel vector. 

A. Parallel loop

  The “parallel_for” pattern is  a  task group implementation 
specifying parallel for loop. When defining a parallel loop (cf. 
Fig. 16), its main range will be partitioned transparently using 
a pseudo-fair partitioning algorithm into several sub-ranges 
depending on the available processing units. Partitioning is 
performed at the pattern construction stage minimizing 
overhead at construct execution and allowing us to implements 
various data partitioning schemes without caring about 
algorithmic complexity: for instance, we  experimented several 
workload  distribution  techniques  and  data   partitioning 
algorithms without modifying the «parallel_for» front-end due 
to its high abstraction of implementation details. The run-time 
system behind our programing interface, its  data partitioning 
algorithms and exceeds the subject of this paper and will not 
be discussed in dedicated papers . 

Figure 16. An example of parallel for loop definition

B. Parallel Vector: Massive data parallelism on 
heterogeneous multicore architecture.

   Vector is a popular homogeneous data container which might 
contains a  significant amount of  data. This  structure  is 
particularly  suited  for  massively  parallel  operations  on 
different partitions of the target vector.  Providing an abstract 
parallel vector interface allows the parallel  processing of its 
element using different algorithms and on various multicore 
and many-core platforms: for instance Thrust [21] is a parallel 
algorithms  library  which  offers a C++  standard  template 
library-like  vector interface and inter-operates internally with 
CUDA, TBB or OpenMP to run on multicore and many-core 
architectures including CPU and GPU. PVL [22], PVTOL [14] 
and VSIPL++ [12] uses  high-level vector, matrix and tensor 
data structures in conjunction with task maps and data maps to 
parallelize  data  processing  and  distributes  workload  across 
available processors [18]. 

  OpenCL is established  as a standard for heterogeneous 
computing [25] and was explicitly designed with abstraction 
that  are  low-level, high performances and portability  [18]. 
OpenCL programming interface requires explicit management 

of memory, kernels compilation and workload scheduling 
resulting into verbose code and requiring deep 
understanding  of all software and hardware components. In 
our programing model we defined an abstract parallel vector 
interface in top of OpenCL enabling programmer to perform 
massively parallel operations on heterogeneous multicore 
architecture. Our vector interface uses the operator 
overriding features of the C++ language to translate 
transparently, at run-time, basic operations, such as addition 
or subtraction...etc, into corresponding OpenCL kernel then 
managing transparently memory transfers and workload 
scheduling. Fig. 17 shows an example of vector addition.

Figure 17. Parallel vector interface: OpenCL kernel is 
generated transparently and memory transfers is managed automatically.

C. Brief  overview of  XPU performances

  In order to give an overview of the achieved performances 
by  our  data  parallelism  implementation,  we  used  our 
framework  to  parallelize  the  popular  “Black-Scholes” 
problem at  thread  level  using the  "parallel_for"  construct 
and  at  a  finer  grain,  at  the  instruction  level,  using  the 
vectorization capability provided by XPU through a built-in 
vectorized  type  (vec4f)  implemented  in  top  of  SSE  to 
support  SIMD.  We  used  the  sequential  code  of  the 
“blackscholes”  application  as  provided  in  PARSEC 
Benchmark Suite  [13,32].  Main processing loop has been 
parallelized at the cost of 3 lines of extra-code. Vectorization 
has been introduced simply by replacing regular float type 
by the "vec4f" vectorized type and by setting increment step 
of “parallel_for” to 4 instead of 1. We compared achieved 
performance by our application to the five parallel version 
provided  in  the  same  benchmark  suite:  OpenMP,  TBB, 
Pthreads,  OpenMP/SSE  and  PThreads/SSE.  We  used  the 
Intel  C++  Compiler  v12.0.5  and  we  executed  our 
benchmark on several multicore platforms. In XPU, optimal 
thread count is determined automatically at run-time, for the 
other  programming  models,  since  thread  count  is  fixed 
manually, we choose the thread count giving the best results 
for  each  platform.  Figure  19  show  the  achieved 
performances for different data input size on a 16 Threads 
SMP platform. Fig. 20 give an overview of the  scalability 
of each version on several platforms ranging from 2 to 16 
hardware threads.

Figure 18. Execution time of the “blackscholes” application for 
different problem size on 16 hardware threads platform (SMP with 2 x two 

Intel Xeon E5620 at 2.4 GHz)

1  int process(int from, int to, int step, image* images) {
2    for (int i=from; i<to; i+=step)  ...
3  }
4  void main()
5  {
6    image * images = … ; 
7    task process_t(process, 0,0,0, images);
8    task_group * pf;
9    pf = new parallel_for(0, image_count, 1, &process_t);
10   pf>run(); 
11 }

1 #define size 1000000 
2 int main()
3  {
4    xpu::vector<float> A(size), B(size), C(size);
5    A = B + C; // Transparent addition on GPU/CPU/...
6 } 



Figure 19. Achieved Throughput (Options/sec) .

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we showed how several different types of 
parallelism can be easily specified at all level of granularity 
inside the HTGG through a friendly programming interface 
designed for high productivity and programmability. The 
HTGG is a rich intermediate representation of parallel 
programs encapsulating not only parallelism and task ordering 
specification but also task-data dependencies. At the time of 
writing this paper, we try to exploit information about task-
data dependencies in conjunction with the provided description 
of the underlying architecture by a dynamic hardware explorer 
(processing unit count, execution capabilities, cache topology 
and sharing...) to design an efficient cache-aware scheduling 
algorithm to achieve efficient execution through improving 
spatial and temporal data locality and minimizing 
communication overhead. Since all this  information become 
available just after the HTGG construction, task-processor 
mapping can be performed before execution reducing 
significantly the importance of the scheduling algorithm 
complexity since no overhead will be introduced when 
executing the constructs. Task-data dependencies can be also 
exploited to build a data-dependency graph automatically at 
run-time then translate it into a HTGG. This may allow us to 
avoid explicit specification parallelism through the keywords 
“parallel”  and “sequential”. Instead, programmer can gives 
simply  a  tasks sequence which will be parallelized 
transparently at run-time using the data-dependency graph..
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